Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from subendothelial extracellular matrix.
نویسندگان
چکیده
The angiogenic factor, basic fibroblast growth factor (bFGF), is sequestered and protected by binding to heparan sulfate proteoglycans (HSPG) in the subendothelial extracellular matrix (ECM). Release of ECM-bound bFGF provides a novel mechanism for regulation of cell proliferation and neovascularization in normal and pathologic situations. Exposure of ECM to thrombin, the final activation product of the clotting cascade, resulted in release of high molecular weight HSPG-bFGF complex, as indicated by its immunoprecipitation with anti-bFGF antibodies, susceptibility to degradation by bacterial heparinase, and inhibition of its mitogenic activity in the presence of neutralizing anti-bFGF antibodies. The ECM-resident bFGF-HSPG complex was not released by thrombin in the presence of hirudin or antithrombin III, or by catalytically blocked thrombin preparations. A threefold to fivefold higher mitogenic activity was released by thrombin from ECM that was preheated (1 hour, 80 degrees C), as compared with native ECM. This difference is attributed to heat stable bFGF-HSPG complexes that are more readily released after heat treatment of the ECM and to activation and release of ECM-resident transforming growth factor-beta (TGF-beta) activity. Our results indicate that the large reservoir of proteolytic activity present in plasma in the form of prothrombin may participate in release from the subendothelial ECM of biologically active bFGF and TGF-beta, depending on the accessibility of thrombin. Thrombin may gain access to the subendothelium on clot formation after tissue injury and as a result of the conversion of prothrombin to thrombin induced by the ECM itself.
منابع مشابه
Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix.
Incubation of platelets, neutrophils, and lymphoma cells with Descemet's membranes of bovine corneas and with the extracellular matrix (ECM) produced by cultured corneal endothelial cells resulted in release of basic fibroblast growth factor (bFGF), which stimulated the proliferation of 3T3 fibroblasts and vascular endothelial cells. Similar requirements were observed for release of endogenous ...
متن کاملRelease of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity
Cultured bovine capillary endothelial (BCE) cells synthesize heparan sulfate proteoglycans (HSPG), which are both secreted into the culture medium and deposited in the cell layer. The nonsoluble HSPGs can be isolated as two predominant species: a larger 800-kD HSPG, which is recovered from preparations of extracellular matrix, and a 250-kD HSPG, which is solubilized by nonionic detergent extrac...
متن کاملHeparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor
The radius of diffusion of basic FGF (bFGF) in the presence and in the absence of the glycosaminoglycans heparin and heparan sulfate was measured. Iodinated 125I-bFGF diffuses further in agarose, fibrin, and on a monolayer of bovine aortic endothelial (BAE) cells in the presence of heparin than in its absence. Heparan sulfates affected the diffusion of 125I-bFGF in a manner similar to, though l...
متن کاملHeparanase as mediator of angiogenesis: mode of action.
Extracellular matrix (ECM) and basement membranes (BMs) present a physical barrier that requires enzymatic degradation during endothelial cell (EC) sprouting at early stages of angiogenesis. These multimolecular structures also serve as a storage depot for heparin-binding angiogenic factors. Heparan sulfate proteoglycans (HSPGs) are responsible for the self-assembly and integrity of the ECM and...
متن کاملSkeletal Muscle Satellite Cells: Identification of a Heparan Sulfate Proteoglycan
Skeletal muscle fibers are surrounded by an extracellular matrix. The extracellular matrix is composed of gly cop rote ins, collagen, and pro teogly cans. Proteoglycans have been suggested by different reports to play an important functional role in tissue differentiation. However, an understanding of how protcoglycans modulate skeletal muscle differentiation and the activation of myogenic sate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 81 12 شماره
صفحات -
تاریخ انتشار 1993